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Krull Domains
The purpose of this part of the course is to address the degree to which
the integral closure of a Noetherian domain fails to be Noetherian. In the
previous section, we saw that Nagata’s example shows that the integral
closure of a one-dimensional Noetherian domain R need not be a finite
R-module. It is, however, a Noetherian ring. This will follow from the
results below.

As mentioned above, the integral closure of a two-dimensional
Noetherian domain is again Noetherian, but this fails for Noetherian
domains of dimension greater than two. This failure is mitigated by the
fact that the integral closure is Noetherian-like in codimension one.

This is made precise by saying that the integral closure of a Noetherian
domain is a Krull domain, a fact known as the Mori-Nagata theorem.

Therefore, the purpose of this part of the course is to prove the
Mori-Nagata theorem.

March 30: Krull Domains and the Mori-Nagata Theorem, part 1



Krull Domains

We begin with a definition.

Definition. Let S be an integral domain with quotient field L. We say
that S is a Krull domain if the following conditions hold.
(i) Each nonzero element of S is contained in only finitely many height

one primes.
(ii) SQ is a DVR, for all height one primes Q ⊆ S.
(iii) S =

⋂
height(Q)=1 SQ .

There are a number of ways that a Krull domain behaves like an
integrally closed Noetherian domain in codimension one.

We illustrate a few of these ways in the proposition below.

March 30: Krull Domains and the Mori-Nagata Theorem, part 1



Krull Domains

Proposition A2. The following properties hold.
(a) A Krull domain is integrally closed.
(b) An integrally closed Noetherian domain is a Krull domain.
(c) A Krull domain satisfies the ascending chain condition on principal

ideals.
(d) If S is a Krull domain, 0 6= a ∈ S, and Q1, . . . ,Qr are the height one

prime ideals containing aS, then there exist e1, . . . , er ≥ 1 such that
aS = Q(e1)

1 ∩ · · · ∩ Q(er )
r is an irredundant primary decomposition of

the principal ideal aS.
(e) If S is a Krull domain and Q ⊆ S is a height one prime, then for any

non-zero a ∈ Q, there exists b ∈ S with Q = (aS : b).
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Krull Domains

Proof. It is easy to see that an intersection of integrally closed integral
domains is integrally closed. Thus (a) follows from (ii) and (iii) in the
definition of Krull domain.

For (b), Let R be an integrally closed Noetherian domain. Condition (i)
holds in R since R is Noetherain, and the height one primes containing a
principal ideal aR must be minimal over aR .

Condition (ii) holds by Corollary B, since a prime minimal over an ideal is
an associated prime of the ideal.

Condition (iii) follows from the fact that R =
⋂

P∈P(R) RP , where P(R)
is the set of prime ideals associated to a non-zero principal ideal, and in
case R is integrally closed, P(R) is just the set of height one prime ideals.
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For part (c), let a1S ⊆ a2S ⊆ · · · be an ascending chain of principal
ideals. Let Q be a height one prime not containing a1S. Then
a1SQ = SQ , and thus anSQ = SQ for all n. Hence a1SQ = anSQ for all n.

Now let X be the finite set of height one primes containing a1S. Take
Q ∈ X . Then since SQ is a DVR, there exists r , depending on Q, such
that ar SQ = anSQ , for all n ≥ r . Since there are only finitely many
primes in X , we can take n0 the maximum of the r ’s we just found.

It follows that an0SQ = anSQ , for all n ≥ n0 and all height one primes
Q ⊆ S. This means an

an0
∈ SQ for all height one primes Q, and so by

property (iii) in the definition of Krull domain an
an0

∈ S, for all n ≥ n0.

Thus an ∈ an0S for all n ≥ n0 and therefore the given ascending chain
stabilizes at n0.
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For part (d), first recall that if Q is a prime ideal in a commutative ring
A, then we define the nth symbolic power of Q to be the ideal
QnAQ ∩ A. Since QnAQ is QQ -primary, Q(n) is Q-primary.

Now fix a non-zero element a ∈ S and let Q1, . . . ,Qr be the height one
prime ideals containing a. Let πi be the uniformizing parameter for the
DVR SQi i.e., πiSQi = QiSQi , for all i . Then, there exist e1, . . . , er such
that aSQi = πei

i SQi = Qei
i SQi , for all i. Thus, aS ⊆ Q(e1)

1 ∩ · · · ∩ Q(er )
r .

Now let x ∈ Q(e1)
1 ∩ · · · ∩ Q(er )

r . Then x ∈ aSQi for all i . Let Q be a
height one prime not containing a.

Then aSQ = SQ , and hence x ∈ aSQ . Thus x ∈ aSQ , for all height one
primes Q in S. In other words, x

a ∈
⋂

height(Q)=1 SQ = S.

Thus, x ∈ aS, which shows Q(e1)
1 ∩ · · · ∩ Q(er )

r ⊆ aS, which is what we
want.
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Finally, the intersection is irredundant, since the nilradicals of the Qi are
distinct.

So for instance, if aS = Q(e2)
2 ∩ · · · ∩ Q(er )

r , then Q(e2)
2 ∩ · · · ∩ Q(er )

r ⊆ Q1.
But then some Q(ei )

i ⊆ Q1 which implies Qi ⊆ Q1, a contradiction.
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For part (e), Let Q ⊆ S be a height one prime and 0 6= a ∈ Q. Take a
primary decomposition of aS as in part (d), and assume Q = Q1.

By prime avoidance, we can find b∗ ∈ Q(e2)
2 ∩ · · · ∩ Q(er )

r \Q. Take
b0 ∈ Q(e−1)\Q(e) and set b := b∗b0.

If c ∈ Q, then cb0 ∈ Q(e), and thus cb ∈ aS. On the other hand, if
cb ∈ aS ⊆ Q(e), then cb0 ∈ Q(e), by the choice of b∗.

Thus, cb0 ∈ πeSQ , where πSQ = QSQ .

Since b0 ∈ πe−1SQ , we have c ∈ πSQ ∩ S = Q, which is what we want.

Thus, Q = (aS : b).
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Remark. Maintain the notation from part (d) in the Proposition above.
Then for the given a ∈ S as in (d), for all n ≥ 1, anSQi = πnei

i SQi .

Thus, arguing as before, it follows that anS = Q(ne1)
1 ∩ · · · ∩ Q(ner )

r is an
irredundant primary decomposition of anR , for all n ≥ 1. Here we are
using the fact that aS and anS are contained in exactly the same set of
height one prime ideals.

Examples. (a) Any UFD is easily seen to be a Krull domain. Thus, for
example, if K is a field, the polynomial ring in countably many variables
over K is a non-Noetherian UFD, and hence a non-Noetherian Krull
domain.

(b) If R is a Krull domain, then a polynomial ring in countable many
variables over R is a Krull domain. Thus if R = K [x , y , z,w ]/(xy − zw),
then adjoining countably many variables yields a non-Noetherian Krull
domain that is not a UFD.
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Krull Domains
The following technical proposition due to J. Nishimura has a number of
applications, including the lovely theorem which follows it.

Proposition B2. Let S be a Krull domain and Q ⊆ S a height one prime
ideal. Then, for all n ≥ 1, the S-module Q(n)/Q(n+1) embeds into S/Q.

Proof. Take 0 6= a ∈ Q. We can write Q = (aS : b), for some b. If we
take a primary decomposition

aS = Q(e) ∩ Q(e2)
2 ∩ · · · ∩ Q(er )

r ,

the proof of part (d) of the previous proposition shows that we can
assume b ∈ Q(e−1) ∩ Q(e2)

2 ∩ · · · ∩ Q(er )
r . We claim that if x ∈ Q(n), then

x ∈ (anS : bn). Thus, x · bn

an ∈ S.

To see the claim, take s ∈ S\Q such that sx ∈ Qn. Then sxbn ∈ anS.
Since Q(en) is the Q-primary component of anS and s 6∈ Q, xbn ∈ Q(en).

On the other hand, bn ∈ Q(ne2)
2 ∩ · · · ∩ Q(ner )

r , so xbn ∈ anS.
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We thus have an S-module map Q(n)
bn
an→ S → S/Q. Call this map φ.

We need to show that if x ∈ Q(n), then φ(x) ∈ Q if and only if
x ∈ Q(n+1). If so, then φ induces an injective map from Q(n)/Q(n+1) into
S/Q, as required.

Take x ∈ Q(n) and assume π ∈ Q satisfies πSQ = QSQ . Suppose
φ(x) ∈ Q. Then x · bn

an ∈ Q, so xbn ∈ Qan.

Therefore, xbn ∈ πanSQ . But in SQ , b = uπe−1 and a ∈ πeSQ , where
u ∈ SQ is a unit. Thus xπn(e−1) ∈ πen+1SQ .

It follows that x ∈ πn+1SQ ∩ S = Q(n+1).

Conversely, suppose x ∈ Q(n+1), Then there exists s ∈ S\Q such that
sx ∈ Qn+1. Then sxbn ∈ anQ (since Q = (aS : b)).

Therefore, s(x · bn

an ) ∈ Q. In other words, s · φ(x) ∈ Q. But φ(x) ∈ S
and s 6∈ Q, so φ(x) ∈ Q, which is what we want.
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Theorem C2. (Nishimura) Let S be a Krull domain. If S/Q is Noetherian
for all height one primes Q ⊆ S, then S is Noetherian.

Proof. Let I ⊆ S be an ideal and take a non-zero a ∈ I. It suffices to
show that I/aS is a finitely generated S-module.

Take the primary composition aS = Q(e1)
1 ∩ · · · ∩ Q(er )

r as above, where
the Qi are the height one primes containing a. Then, on the one hand,

S/aS ↪→ S/Q(e1)
1 ⊕ · · · ⊕ S/Q(er )

r ,

so it suffices to show that S/Q(e1)
1 ⊕ · · · ⊕ S/Q(er )

r is a Noetherian
S-module.
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On the other hand, given any height one prime Q ⊆ S, our assumption
on Q and Proposition B2 show that Q(n−1)/Q(n) is a Noetherian
S/Q-module, and hence a Noetherian S-module, for all n ≥ 1.

Thus, induction on n and the short exact sequences

0 → Q(n−1)/Q(n) → S/Q(n) → S/Q(n−1) → 0

show that each S/Q(n) is a Noetherian S-module.

Therefore, S/Q(e1)
1 ⊕ · · · ⊕ S/Q(er )

r is a Noetherian S-module, which
completes the proof.
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